

Integrity CAAM Driver
Documentation and User's Guide

December 2017, version 1

Table of Contents wolfSSL
3.12.2

1.0 INTRO

2.0 Building

​2.1 Building The Driver

2.2 Building wolfSSL

3.0 Use

​3.1 Initialization

​3.2 Sending the Driver a Command

​3.3 AES

​3.3.1 AES-ECB

​3.3.2 AES-CBC

© Copyright 2017 wolfSSL

​3.3.3 AES-CTR

​3.3.4 AES-CCM

​3.4 Hash

​3.5 Blobs

​3.6 TRNG

​3.7 Error Values

​3.8 Threaded Applications

4​.0 Appendix

4​.1 API

© Copyright 2017 wolfSSL

1.0 INTRO

This driver was created to make use of iMX.6 hardware acceleration with the Integrity
OS. The driver operates from the kernel space where permission is granted to access
addresses needed to operate the CAAM. Permission to access these addresses are
restricted by the OS in a users application. The general flow for use is that a kernel with
the driver is made, then the user's application running on the created kernel makes a
request for the IODevice resource. After the application gets the IODevice it then sends
commands along with buffers to be processed. ​Section 3.0 ​about “Use” goes into more
detail about the commands and buffers passed to the IODevice. All code for the driver is
located at wolfssl-root/wolfcrypt/src/port/caam/caam_driver.c with a header file located
at wolfssl-root/wolfssl/wolfcrypt/port/caam/caam_driver.h.

The driver supports:

● AES-CCM
● AES-ECB
● AES-CBC
● AES-CTR
● MD5
● SHA1
● SHA-224
● SHA-256
● TRNG
● Blob creation and opening

NOTE: The same logic used for SHA-256/224 can be used for SHA-384/512 and is in place but has not completely been tested due
to hardware support.

2.0 Building

This covers two sections. First, building the kernel to incorporate the driver and second,
building wolfSSL to use the driver.

2.1 Building The Driver

● To build a kernel with the driver add the file caam_driver.c to the kernel build.

© Copyright 2017 wolfSSL

● The next step is to include the path to wolfssl-root for including the file
wolfssl/wolfcrypt/port/caam/caam_driver.h. This include path must be added to
the project.

● Next, build the project and create a .uimage from the output. This can be done in many
different ways, for the digiConnectCore6 board it was done using the elfloader.exe and
arm_elfloader.exe sent with Integrity along with using mkimage. The following is an
example of the commands that would be used if the kernel’s name in the MULTI project
was caam_kernel.

$ C:\ghs\comp_201516\elfloader.exe -l

C:\ghs\int1144\digiConnectCore6\arm_elfloader.bin -o

kernel.elf caam_kernel

$ mkimage -n wolfSSL -A arm -O Linux -C none -a 0x18000000 -d

kernel.elf kernel.uimage

© Copyright 2017 wolfSSL

● After the uimage has been created place it in the root directory of an SD card and start

the board up with the SD card inserted.

● It is now ready for an application to be loaded.

2.2 Building wolfSSL

● This section covers building wolfSSL to make use of the driver. To build wolfSSL
source files from wolfssl-root/wolfcrypt/src/*.c (except misc.c if using INLINE),
source files from wolfssl-root/src/*.c and source files from
wolfssl-root/wolfcrypt/src/port/caam/*.c (except caam_driver.c) should be
compiled.

© Copyright 2017 wolfSSL

● A path to wolfssl-root/ must be added to the include paths for the project.

© Copyright 2017 wolfSSL

● Lastly, customization of the build is done with the use of macros. Note that if
using a user_settings.h file for this the macro WOLFSSL_USER_STTINGS must
be defined. The following is a list of the macros that pertain to i.MX6 builds.

1. WOLFSSL_IMX6​ : This macro sets the size of long long to 8 if it is not
already set. The macro is meant to be used for build with i.MX6 boards.

2. WOLFSSL_IMX6_CAAM​ : This macro sets the build to use all available
hardware crypto. This includes getting entropy from the TRNG, access to
creating blobs, AES operations and hashing algorithms.

3. WOLFSSL_IMX6_CAAM_RNG​ : This macro turns on using the TRNG
only.

4. WOLFSSL_IMX6_CAAM_BLOB​ : This macro turns on access to
creating/opening blobs only.

5. WOLFSSL_IMX6_CAAM_PRINT ​: Used for extra debug printing. Note
that when defined stdio.h is included by the project and calls to printf are
made.

6. NO_IMX6_CAAM_AES: ​When defined the software implementation of
AES operations are used.

© Copyright 2017 wolfSSL

7. NO_IMX6_CAAM_HASH: ​When defined the software implementation of
hashing operations are used.

8. WC_CAAM_PASSWORD​ : Controls the password used when trying to
get the IODevice on startup. It is set to the default of “!systempassword” if
not defined by the user at compile time. Note that there is also the API of
wc_caamSetResource(IODevice ioDev) to allow for run time setting of
CAAM IODevice.

3.0 Use
The driver can be used outside of wolfSSL API calls but it is designed and developed
for use with wolfSSL. These sections cover how to use the driver and how wolfSSL
uses the driver.

© Copyright 2017 wolfSSL

3.1 Initialization
Initialization of the driver is done by requesting the IODevice from the OS. A default
name of “wolfSSL_CAAM_Driver” is given to the IODevice. The Integrity OS API used
for requesting the IODevice is RequestResource (see Integrity documentation for more
on the API). The next portion covers how wolfSSL performs initialization by making a
call to RequestResource or by having the IODevice set by the user.

By default when wolfSSL_Init() or wolfCrypt_Init() is called and the macro for i.MX6
hardware crypto use is defined, wolfSSL will try to get the IODevice resource from the
OS. Because the attempt to get the resource is with the default password of
“!systempassword” it is not a hard failure if unable to get the resource. Instead a debug
message and error will be displayed (when DEBUG_WOLFSSL macro is defined and a
call to the function wolfSSL_Debugging_ON() is made). If the password set by the
macro WC_CAAM_PASSWORD is unable to get the IODevice then the API
wc_caamSetResource must be called with the IODevice as an argument. In the case
that no IODevice is able to be set all attempts to use the hardware crypto will result in
error values being returned.

3.2 Sending the Driver a Command

A command is sent to the driver by creating an array of type Buffer and an unsigned int
array of length 4. Both the buffers and unsigned int array are sent to the Integrity API of
SynchronousSendIORequest (more on this API can be found in the Integrity
documentation). The driver is expecting the Buffers to be in a specific order and will give
errors or wrong cipher/plain texts in the case that a different order is received. For
example AES operations have the general buffer order of KEY -> optional IV -> Input ->
Output. In the case of AES-CCM, there is the additional data buffer that is sent after the
IV and with AES-ECB no optional IV is sent. Sent along with the buffers is the array of
unsigned ints holding information about what is to be done with them. An example of
values in the array is with AES having the first index of the array contain encrypt/decrypt
flag, the second contain the key size, the third having the input/output size, and the
fourth containing additional data size in the case of AES-CCM. Along with the buffer and
unsigned int array, a type is sent to the driver. The type controls which algorithm is
used. An example call to SynchronousSendIORequest with these three things would be
the following.

© Copyright 2017 wolfSSL

SynchronousSendIORequest(ioDev, CAAM_AESECB, args, buffers);

3.3 AES

This goes into depth about how wolfSSL is using the IODevice for AES operations.

3.3.1 AES-ECB
Type: CAAM_AESECB
Buffer Pattern:

Argument Pattern:

1. CAAM_ENC / CAAM_DEC
2. Key size in bytes
3. Input / Output size in bytes

3.3.2 AES-CBC
Type: CAAM_AESCBC
Buffer Pattern:

Argument Pattern:

1. CAAM_ENC / CAAM_DEC
2. Key size in bytes
3. Input / Output size in bytes

© Copyright 2017 wolfSSL

3.3.3 AES-CTR
Type: CAAM_AESCTR
Buffer Pattern:

Argument Pattern:

1. CAAM_ENC / CAAM_DEC
2. Key size in bytes
3. Input / Output size in bytes

3.3.4 AES-CCM
Type: CAAM_AESCCM
Buffer Pattern:

Argument Pattern:

1. CAAM_ENC / CAAM_DEC
2. Key size in bytes
3. Input / Output size in bytes
4. AAD size in bytes (note is unformatted)

3.4 Hash
All wolfSSL hashing API does not change when using the driver versus using the
software implementation. This goes into some depth though about how wolfSSL is using
the IODevice for hashing operations.

All hashing algorithms have a rolling context used to keep track of the state. The size of
the context buffer must be the size of the digest plus 8 bytes. In the case of SHA224

© Copyright 2017 wolfSSL

and SHA384 it should be the size of SHA256 digest and SHA512 digest, respectively.
All implemented hash algorithms follow the same pattern for expected buffers and
arguments. On each call the context is written to by the driver, updating the state of the
rolling digest. When CAAM_ALG_FINAL is used the context will contain the digest
output.

The types passed to the IODevice can be:

● CAAM_MD5
● CAAM_SHA
● CAAM_SHA224
● CAAM_SHA256

Buffer Pattern:

Argument Pattern:

1. CAAM_ALG_INIT / CAAM_ALG_UPDATE / CAAM_ALG_FINAL
2. Context size in bytes (digest size + 8 bytes)

3.5 Blobs
Blobs are created by encrypting data using the master key from the hardware. The
driver is set to use Red Key types.

Type: CAAM_BLOB_ENCAP / CAAM_BLOB_DECAP
Buffer Pattern:

Argument Pattern:

1. N/A
2. N/A

© Copyright 2017 wolfSSL

3. Input Size

3.6 TRNG
wolfSSL uses the TRNG to seed its HASH-DRBG algorithm when either the macro
WOLFSSL_IMX6_CAAM or WOLFSSL_IMX6_CAAM_RNG are defined. Note that if the
hardware does not have entropy ready the Integrity enum value “Waiting” is returned.
The following is the type, buffers, and arguments for getting entropy from the driver.

Type: CAAM_ENTROPY
Buffer Pattern: A single output buffer.
Argument Pattern: NONE (can be NULL)

3.7 Error Values
There is a wide range of error values that can be returned from the driver. wolfSSL can
print out the exact return value from the driver when in debug mode but the return
values from the driver are handled as three possible states.

● WC_HW_WAIT_E (value of -249) is returned when the Integrity OS error
ResourceNotAvailable is received from the driver. This error indicates that the
current IORequest is not available at the moment and to try again later.

● RAN_BLOCK_E (value of -105) is returned when the Integrity OS error Waiting is
received from the driver. A waiting error indicates that the current operation could
not be performed and a call again should be made later. This is most common
when trying to read TRNG at a time when the hardware has none available yet.

● WC_HW_E (value of -248) is returned when any error was encountered with the
driver. After the driver encounters an error of this kind the current job ring is
flushed and a soft reset is attempted.

● The value of 0 indicates a success.

This is a list of all values returned by the driver:

Integrity OS Enum Returned Description

NotRestartable Is returned if a soft reset fails. This means
that the driver is locked in an error state
and a hard reset is needed.

© Copyright 2017 wolfSSL

Success Returned when successful.

Failure Returned when there is a failure from
CAAM. An example of this could be a
DECO or CCB error.

NoActivityReady Returned if the CAAM is idle but was
expecting it not to be.

Waiting Returned if waiting on a resource to
become available. An example would be
if waiting for more entropy.

IllegalRegisterNumber Error with read register.

OperationNotAllowedOnTheUniversalIOD
evice

Writing to registers is not allowed.

TooManyBuffers The most common case for this return
value is either an input/output buffer size
is more than expected or more buffers
were received than expected.

IllegalStatusNumber Returned if the argument passed in for
AES is not CAAM_ENC or CAAM_DEC.

ArgumentError Returned if AES key size is not 16, 24, or
32 bytes.

Returned if key size is larger than internal
buffer to hold it.

SizeIsTooLarge Returned if key size, context size, or IV is
too large.

Also returned in the case that more
entropy is requested than available. By
default there is 11 word32 registers with
entropy giving a max of 44 bytes available
at a time.

TransferFailed Returned in the case that the descriptor
being created got larger than 64.

© Copyright 2017 wolfSSL

OperationNotImplemented The type or state attempted to be used is
not implemented yet or is unknown.

UsageNotSupported The type is not supported

ResourceNotAvailable Returned when there is not an available
structure for starting a new descriptor.

3.8 Threaded Applications
There is only a single IORequest available by default which limits the driver to be used
by one task at a time. If one task is using the IODevice and another second task from
the same process tries to use it at the same time then a ResourceNotAvailable will be
returned from the driver to the second task. When wolfSSL receives a
ResourceNotAvailable error it will return an error value of WC_HW_WAIT_E.

4.0 Appendix
The appendix has API documentation and benchmark values.

4.1 API
wc_caamSetResource

Synopsis:
wolfssl/wolfcrypt/port/caam/wolfcaam.h

int wc_caamSetResource(IODevice ioDev);

Description:
This function is used to set the IODevice to make use of hardware acceleration on an
i.MX6 board with Integrity OS.

Return Values:
0 is returned on success.

Parameters:

ioDev​ : This is the Integrity OS IODevice to be used for hardware acceleration.

© Copyright 2017 wolfSSL

Example:

IODevice ioDev;

/* get IODevice from Integrity OS (default name is wolfSSL_CAAM_Driver) */

ret = wc_caamSetResource(ioDev);

if (ret != 0) {

// failed to set resource

}

See Also:
wolfSSL_Init, wolfCrypt_Init

wc_caamOpenBlob

Synopsis:
wolfssl/wolfcrypt/port/caam/wolfcaam.h

int wc_caamOpenBlob(byte* data, word32 dataSz, byte* out, word32* outSz);

Description:
This function is used to open a blob. It decrypts the input data using the master key
from the hardware and outputs the result. The output buffer must be large enough to
hold dataSz - WC_CAAM_BLOB_SZ (macro set to 48). The parameter outSz must be
set to the size of the out buffer before passed in.

Return Values:
WC_HW_E ​: Error case with CAAM driver call.
WC_HW_WAIT_E ​: Waiting on driver.
BAD_FUNC_ARG ​: Error case for bad input argument, could be output buffer size or
NULL pointers.
0 ​: Success case.

Parameters:

data​ : This is the buffer holding the blob to be decoded.
dataSz​ : Size in bytes of data buffer

© Copyright 2017 wolfSSL

out​ : This is the buffer to hold the result.
outSz​ : Input as the size in bytes of out buffer. Get set to the exact size of resulting
buffer.

Example:

byte blob[SIZE];

byte secret[SIZE - WC_CAAM_BLOB_SZ];

word32 secretSz;

int ret;

wolfSSL_Init();

secretSz = sizeof(secret);

ret = wc_caamOpenBlob(blob, sizeof(blob), secret, &secretSz);

if (ret != 0) {

// failed to open blob

}

// secret now holds the decoded blob

See Also:
wc_caamCreateBlob, wolfSSL_Init, wolfCrypt_Init

wc_caamCreateBlob

Synopsis:
wolfssl/wolfcrypt/port/caam/wolfcaam.h

int wc_caamCreateBlob(byte* data, word32 dataSz, byte* out, word32* outSz);

Description:
This function is used to create a blob. It encrypts the input data using the master key
from the hardware and outputs the result. The output buffer must be large enough to
hold dataSz + WC_CAAM_BLOB_SZ (macro set to 48). The parameter outSz must be
set to the size of the out buffer before passed in.

Return Values:
WC_HW_E ​: Error case with CAAM driver call.

© Copyright 2017 wolfSSL

WC_HW_WAIT_E ​: Waiting on driver.
BAD_FUNC_ARG ​: Error case for bad input argument, could be output buffer size or
NULL pointers.
0 ​: Success case.

Parameters:

data​ : This is the buffer holding the blob to be decoded.
dataSz​ : Size in bytes of data buffer
out​ : This is the buffer to hold the result.
outSz​ : Input as the size in bytes of out buffer. Get set to the exact size of resulting
buffer.

Example:

byte secret[SIZE];

byte blob[SIZE + WC_CAAM_BLOB_SZ];

word32 blobSz;

int ret;

wolfSSL_Init();

blobSz = sizeof(blob);

ret = wc_caamCreateBlob(secret, sizeof(secret), blob, &blobSz);

if (ret != 0) {

// failed to create blob

}

// blob now holds the encoded secret

See Also:
wc_caamOpenBlob, wolfSSL_Init, wolfCrypt_Init

© Copyright 2017 wolfSSL

