",

wolfSS1

Instruction Manual for the wolfSSL
Example Application

Target: Renesas RX72N Envision Kit
RTOS: FreeRTOS+ 10T libraries



TABLE OF CONTENTS

What IS this dOCUMENT FOI? ...ociiiiii et et et e e eabe e et e e enees 3
EXample Program SEFUCLUIE ........coiiiiiiiieie et ettt s 3
Requirements for building and running the example project..........ccccvieiiiiiiiienciesceee e 4
Procedure for creating a wolfSSL example application project ..........ccooceioiiiiiinic i 4
1.Create a new executable ProJeCt ... 5
Create @ new FreeRTOS Project ... e 5
2.DEVICE INFO SETLINGS ...ttt ettt 8

3. AAdING FIT MOAUIES ...ttt e 8
£.COPY WOIFSSL PACKAGE ...t 13

5. SECEION SETEING ..ttt e e 13
6.Adding wolfSSL Library and wolfSSL demo files........ccoeiiiiiiiiiiiciic e 14
IMporting Wolfssl IDrary ProjeCt ... 15
Adding wolfssl demo application files ..o 15
Adding Include file paths to the project ... 18
AddiNg PreproCeSSOr MACIO ......cuicuiiiiiiiiiiee ettt sttt st st st st e 18
AddiNg LINK LIDrary ....o.eo et e 19
7.AddiNg WOIfSSL deMO @5 @ TASK......iivieiiiiieiiie et e 19
Execution of the wolfSSL demo application ... 20
CrYPLO-TEST AEMIO. ...t e s e 20
Crypto-Benchmark demo... ...t e 21
TLS-CHENt MO ... e e s 22
Changing server cert(changing authentication method) ..........cocoeiiiiiniii i 24
Things todo when using USer’s root CA CeIt.........cuiiiiiiiiiiiiicii e 25
RESOUICES .o 26
RENESAS SITES....viiiiiiii it 26
WOITSSL SITES ...t 26



1510 oo T o a1 e I o T ¥ =Yt R 26

WHAT IS THIS DOCUMENT FOR?

This document is an instruction to add wolfSSL TLS library and to run an example program on the
Renesas RX72N Envision Kit. The target MCU is expected to be used with a real-time OS when the
product is installed. Therefore, this example program is provided in a configuration that uses
FreeRTOS and FreeRTOS + TCP. The steps for generating and executing the program as a new
project of e? studio, an IDE made by Renesas, is explained below.

EXAMPLE PROGRAM STRUCTURE

The FreeRTOS kernel and FreeRTOS + TCP protocol stack are required to execute this example
program, but they are automatically prepared when creating a new e? studio project. A script that is
automatically executed when the project is created, downloads the FreeRTOS-related source files
from the GitHub and configures the settings necessary for operation on the evaluation board. The
downloaded FreeRTOS loT Libraries include several demo applications, and the demo application
selected from them is configured to be executed.

Device
Mgtt demo HTTP demo ------ Shadow Demo apps
demo
TCP OTA  coeenn Device IoT Libraries
Shadow
FreeRTOS Kernel Kernel

H,/W Drivers Renesas Dirvers

fig.1. Original Structure of the FreeRTOS+loT libraries demos

The wolfSSL example program adds the wolfSSL library, the wolfSSL demo application, and the FIT
components required as the H/W driver to this configuration, and configures it as shown in fig.2.



Additional Components

Device L
Matt demo HTTP demo  ------ Shadow WZ Demo apps
demo emo
TCP OTA  ==---- ghe;’(;:v wolfSSL IoT Libraries
FreeRTOS Kernel Kernel
H/W Drivers TSIP Driver Renesas Dirvers

fig.2. The extended structure by adding wolfSSL demo

The added wolfSSL demo application runs as a task on the FreeRTOS kernel and utilizes the TCP
protocol stack as a communication channel. In addition, the wolfSSL library supports TSIP. By
replacing some of the encryption and TLS functions implemented by the wolfSSL library as
software with H/W (TSIP), it is possible to significantly improve the processing speed.

REQUIREMENTS FOR BUILDING AND RUNNING THE EXAMPLE PROJECT

Tools and components required for the building and execution of this example program:

1. e?studio Version 2020-07 or later
2. CC-RXTool Chain V3.02 or later
3.  TSIPvi1.14 or later

4. RTOSv202002.00-rx-1.0.1 or later

5. wolfSSL v5.1.1 or later

PROCEDURE FOR CREATING A WOLFSSL EXAMPLE APPLICATION PROJECT

The following steps are roughly required to execute this example program :
1. Create an executable project including FreeRTOS+loT libraries on e*Studio
2. Settings for the target MCU and the evaluation board

3. Adding FIT components and their update



4. Copy wolfSSL package

5. Section settings

6. Adding wolfSSL library project and wolfSSL demo files
7. Execution of wolfSSL demo

From now on, the above steps will be described in that order.

1.CREATE A NEW EXECUTABLE PROJECT

Launch e?studio and specify a folder to be its workspace. The folder will be the base folder of the
project. Here after, the folder is referred as <base> in this document.

CREATE A NEW FREERTOS PROJECT

Selecting “File” menu > “Import...” > “General” > “Renesas GitHub FreeRTOS(with |oT libraries)
Project” will show you dialogs below.

8 r v b~ | o
Renesas GitHub FreeRTOS (with loT libraries) Project l-o0 6>
Missing RTOS Version.
€3 Missing ‘ersion. L _Q~_
a2
Specify a folder to copy selected RTOS version in order to il
FreeRTOS (with loT libraries) Module Download
Folder: | F:\Work\1_Renesas\72n_demo\EN \A
Select RTOS modules for download and specify download location g E I
RTOS version setting (download path should be short, for example "C:\afr”)
Version: | Title Rev. Issue date A || Select Al
I Checkformore version. I []  FreeRTOS (with loT libraries) v202012.00-rza2m-1,0.0 2021-12-09 Deselect All
\ [[] FreeRTOS (with loT libraries) v202012.00-re-1.0.0 2021-10-26
[ FreeRTOS (with loT libraries) v202012.00-r178-1.0.0 2021-10-18
| ) FreeRTOS (with loT libraries)  v202012.00-0-1.00 | 2021-10-07
[] Fre S (with loT libraries) v202002.00-rc-1.0.5 2021-05-10
[]  FreeRYQS (with loT libraries) v202002.00-r¢-1.0.4 2021-03-16
]  Freel (with loT libraries) v202002.00-r78-1.0.3 2021-02-17
[]  FreeRTOS\with loT libraries) v202002.00-m¢-1.0.3 2021-01-28
[]  FreeRTOS (Wjth loT libraries) 202002.00-r178-1.0.2 2020-11-19
LIT]_FreeRTOS (wilg InT librarie<) 202002.00-r¢-1.0.3 2020-10-16 ]
Madule Folder Path:
F:\afr | Browse...
(3/,' < Back Next> | i

v TR = A

fig.3. Steps to choose FreeRTOS module to download



On a FreeRTOS(with loT libraries) Module Download dialog, select FreeRTOS with revision
"v202012.00-rx-1.0.0". Next, specify the download destination folder. Note that the folder path
should be short enough to avoid errors where the path length is too long.

Once the download is complete, you will be able to see the location of your project and the version
of FreeRTOS, shown in fig.4.

e 3 <
Renesas GitHub FreeRTOS (with loT libraries) Project
1, Specified folder is not empty.

Folder: | F\Work\1_Renesas\72n_demo\EN | Browse...
RTOS version setting *
Versiong] | v202012.00-n¢-1.0.0 w

Check for more version...

;

,\? < Back Finish Cancel

fig.4. The project location and the version of FreeRTOS to use

The folder is identical to the workspace folder and is to be referred as <base>. For the next step, you
need to choose a demo type for the target MCU and the compiler.

The dialog show in fig.5 lists up products ready for import to your <base> folder. The list contains
three types( aws_demo, aws_test and boot_loader). Pick up

“aws_demos( ...\projects\renesas\rxy2n-envision-kit\e2studio\aws_demos)”



from the list.

Import Projects

Select a directory to search for existing Renesas projects.

.
| (@ Select root directory: i F\Work\1_Renesas\72n_demo\EN

1 Projects:

i
[t}-pe filter text

[] aws_demos (F:\Work\1_Renesas\72n_demo\EN\projects\renesas\rx65n-rsk\e2studio-gcc\aws_demos)
[] aws_demos (F:\Work\1_Renesas\72n_demo\EN\projects\renesas\m671-rsk\e2studio\aws_demos)

l—l F .rr\ui Lo e P | LCAn

@ aws_demos (F A\Work\1 Renesad\?zn _demol\EN\projects\renesas\nc72n-envision-| ht\elstucho\aws demos]

Taoa CWR L WL K WL 157 WO 1 A o \
7

i R-ENVISION- gCC\aws_demos)

[] aws_demos (F \Wurk\1 _Renesas\72n_demo\EN\projects\renesas\nc72n-envision-kit-uart-sx-ulpgn\ e2studio\aws_demos)

71 aws demos (F:\Work\1 Renesas\72n demc\EN\oroiects\renesas\rn«72n-envision-kit-uart-sx-uloan\e2studio-acc\aws dem¢ ¥
>

<

[] aws_demes (F:\Work\1_Renesas\72n_demo\EN\projects\renesas\m65n-rsk\e2studio\aws_demos) ~

Options
[ Search for nested projects
[[] Hide projects that already exist in the workspace

Browse...
Select All

Deselect All

Refresh

Cancel

fig.5. Import Projects dialog

Script runs to extract selected source files and organize project folders in the project explore pane.

v =5 aws_demos
» ! Includes
» (= application_code
» (= config_files
» (= demos

v L= freertos_kemel

» (= libraries

vendors

aws_demos.scfg

aws_demos HardwareDebug.launch

i {85 (7




fig.6. Imported and organized aws_demos project

2.DEVICE INFO SETTINGS

Before adding FIT modules, set the board and device information. Double-click aws_demos.scfg on
the Project Explorer to open the Smart Configurator Perspective and select the Board tab at the
bottom to display the “Device selection” settings pane.

In the “Board” type selection list, choose “RX72NEnvisionKit(V1.10)" . If no board type listed, you
can get them by clicking the link named “"Download more boards...”.

When you choose the board, “"Device” is filled with "“R5F72NDHxFB” automatically.

> b w vl—a-

' 8

= Device selection
v 25 aws_demos G
> [m Includes
= application_code Device selection
» (& config_files
» & demos Board: |  RX72NEnvisionKit (V1.10) ' i
v (= freertos_kernel
& libraries Device: | R5F572NDHxFB
= output Download more boards...
= vendors

i°h aws_demos.scfg

areDebug.launch
~ Feature Selection

To add a component, make the/selection from the table below and click on t
The configurations for each adfded component can be further configured in

Features Components
Ethernet Interface @ FEthemnet Driver. (r
LCD Display Graphics LCD Cor
LEDs Ports
Light Sensor Simple |IC Driver.
microSD Slot 5D Mode SDHI Dr
Pmod Connectgr (INTP) Interrupt Controll

\ Pmod Connector 1 SPI Clock Synchre
Pmod Conngkttor 2 5P| Clock Synchre
Serial Flash QSPI Clock Synch
o, O Y ISR Llack Mo

Owerviefv Board  [Llocks System-Components- Pins;!nter:upts

fig.7. Device selection

3.ADDING FIT MODULES

At this point, the project has the source files for FreeRTOS, the loT library and the demo
application. In addition, the source files of the necessary FIT components (drivers provided by



Renesas) have already been generated. However, some FIT component libraries need to be
downloaded and obtained from the Renesas site.

Double-click aws_demos.scfg on the Project Explorer to open the Smart Configurator Perspective
and select the "Components" tab at the bottom to display the “"Software components
configuration” pane. Then push the icon to show “Software Component Selection” dialog shown in
fig.8.

5%V § | software component configuration

v =% aws_demos
¥ mitl Includes
» = application_code Components R %2 0 & v (Con
= config_files Z
W s

(= demos .
» (= freertos_kernel |t];pe filter text
libraries
- output

L=
N

W

G

w = Startup
w [ Generic
? r_bsp
v = Drnivers
v (= A/D Converter
w rsllad_m
~ = Memory
w' r_flash_mx

{5 aws_demos.scfg

reDebug.launch

w = Communications
%‘ r_ether_rx
m r_sci_m
v = Middleware
\ v (= Generic
w r_byteg
= RTOS
[= RTOS Kernel
& FreeRTOS_Kemnel

@ AWS_securk socket
& AWS tcp_ip

Overview | Board | Clocks Systerh Cnmpnne‘nts.i'rns [

[ . Loy = - - | n . —

fig.8. Software components configuration



In the “Software Component Selection” dialog, find and choose one FIT component to add the
project. If no components are listed in the dialog, it means that you need to download FIT
components from Renesas site into your PC. Click the "Download the latest FIT drivers and

middleware” link.

i Software Component Selection

Select component from those available in list

Category All ~
1. Function .AH w
Filter |
: Components B Short Name Rpe Version ~
| 8 e-Bit Timer Code Generator 190
5 Board Support Packages. r_bsp Firmware Integr... 6.20
£ Buses Code Generator ~ 1.10.0
8 Clock Frequency Accuracy Measuremen... Code Generator 1.10.0
% Compare Match Timer Code Generator 220
H## Complementary PWM Mode Timer Code Generator 1.10.0
¥ Continuous Scan Mode S12AD Code Generator 1.12.0
{# Convert the TCP/IP(T4) - RX Ethernet Dri... r_t4_driver_rx Firmware Integr...  1.08
8 CRC Calculator Code Generator 1.10.0
## D/A Converter Code Generator  1.10.0
## Data Operation Circuit Code Generator 1100 | »

(41 Show only latest version
Description

that comprise two 8-bit counter channels, totaling four channels.

This software component generates two units (unit 0, unit 1) of an on-chip &-bit timer (TMR) module

Download the latest FIT drivers and middleware

Lonfigure general settings...

< Back Mext >

S

fig.9. Software Component Selection Dialog

10

Cancel



If you have downloaded the latest FIT components in your PC, you can extract the components to

add in the list by specifying the function type of the component.

wolfSSL demo requires following FIT components to add the project:

1. TSIP component(r_tsip_rx)

2. CMT component(r_cmt_rx)

Let's take an example of how to add a TSIP component. Select “Security” function category in the
following dialog lists up TSIP in the component list. Click the TSIP in the list and then push "Finish"
button to add the component. Since you can add only one FIT component at a time, repeat the

same steps to add other components.

' Software Component Selection

Select component from those available in list

Category_ All

Function|  Security

Filter | /

Components r- Short Name

Type

Version

£ TSIP(Trusted Secure IP) driver. r_tsip_m

Firrmware Integr...

1.14.

A Show only latest version
Description

Download the latest FIT drivers and middlewars

Configure general settings...

{?\} < Back MNext >

fig.10. How to add TSIP

11

Finish

Cancel



After adding TSIP and CMT driver to the project, you can see those components are listed in the

components pane.

12

Software component configuration

Components

- -

Mdl D EB

1 type filter text

|

w [= Startup
v [= Generic
T r_bsp
v k= Drivers
v [= A/D Converter
F r_s12ad_mx
v = Memory
ﬁi r_flash_rx

v = Securi
&;? r_tsip_m I
W

ﬁ"-" r_ether_rx

%-7 r_sci_m

i
A remt
w == Middleware

v = Generic
% rbyteq
v = RTOS
w = RTOS Kernel
& FreeRTOS_Kemel
v [= RTOS Object
@& FreeRTOS_Object
w = RTOS Library
& AWS_device_shadow
& AWS_ggd
& AWS_mqtt

A

W

Con

-

PS

|| Overview |Board | Clocks | System | Components | Pins | |

fig.11. Component list



After specifying the required FIT components, let SMC(SMart Configurator) generate source files.
Push the button on the top right of the “"Software component configuration” pane. Generated files
are added to the aws_demos project.

4.COPY WOLFSSL PACKAGE

If you have a wolfSSL package downloaded from the GitHub or wolfSSL download page, it has
version string in its top folder name(such as wolfssl-5.1.1-stable) like as the right box of fig.12. Copy
the entire package under the <base> folder with the name “wolfss|”.

This is important because both wolfSSL demo and aws_demos refer each other by traversing their
path names. Therefore, name of wolfssl top folder and the location should be exact the same as
fig.12.

,,J <base> ---- e2studio workspace folder

I ##Jl .metadata

— F'_._._jl demos
— FHJ doc
— ,HJI freertos_kernel

— J libraries wolfssl package

,,J act J wolfssl-5.1.1-stable
— projects -

. —J .github
—ﬂ__J' tests _
— certs
_J tools #,J
copy — cmake
— ,HJI vendors ;

L J wolfss|

fig.12. folder structure after wolfssl package added

5.SECTION SETTING

Section setting in the memory map is necessary. Open the property page of the aws_demos
project, then choose “C/C++ Build” > "Settings” > “Linker” > “Section” to show section setting pane.
Push the button located in the right most of the pane to show the “Section Viewer” dialog.

13



Push the “Import...” button to show the dialog for specifying the section setting file to import.

DACAS MISAE  WIIA. UUIAAOLL  eain

| |ty|:e filter text |

Settings

Pwp

» Resource
Builders
w C/C++ Build
Build Variables
Environment

Tool Chain Eitor

» C/C++ General
Project Matures
Project References
Renesas QF
Run/Debug Settings
Task Tags

» Validation

v 1 Common
=Y ell]
(3 PIC/PID
(2 Miscellaneous
~ 183 Compiler
~ (# Source
(# Advanced
(5 Object
5 List
v (3 Optimization
(% Advanced
3 Output
(8 MISRA C Rule Check
(22 Miscellaneous
2 User
v @) Assembler
(2 Source
L“% Object
5 List
(3 Optimization
(2 Miscellaneous
(52 User
v & Linker
v (3 Input
(% Advanced
v (5 Output
(%2 Advanced

wétion

(22 Symbol file
(& Advanced
(22 Subcommand file
(2 Miscellaneous
(8 User
~ 83 Library Generator
3 Mode
(% Standard Library
(2 Object
~ (2 Optimization

fig.13. How to show the “Section Viewer” dialog

Sections (-start) [SU,5I,B_1,R_1,B.2R 2B,RB_8R 8/04C 1,C 2C.C8CY |

a3
| Section Viewer

Address
0x00000004

Add Section
New Overlay
Remove Section
Move Up

Move Down

[C] Override Linkey/Script

In the dialog for a section file, specify the following file:

<base>\wolfSSL\IDE\Renesas\e2studio\RX72N\EnvisionKit\resource\section.esi

6.ADDING WOLFSSL LIBRARY AND WOLFSSL DEMO FILES

Import... |Export...

Browse

_ oK Car_lcel |

The next thing you need to do is add the wolfSSL library project and the code for the wolfSSL demo
application to the aws_demos project.

14



IMPORTING WOLFSSL LIBRARY PROJECT

Then import the project that builds the wolfSSL library into the project explorer on e* studio. The
wolfSSL library project is already available as an e? studio project in the wolfSSL package.

On e?studio, selecting “File” menu > “Open a project from the file system” > “Directory” pops up
the dialog for specifying a folder including a project file. Specify the following folder:

<base>\aws_demos\wolfssI\IDE\Renesas\e2studio\RX72N\EnvisionKit\wolfss|

The dialog finds out a wolfssl| project to import.

v -5 aws_demos [HardwareDebug]
Rt Includes
2 vendors/renesas/boards/m72n-envisi
> application_code
. config_files
. demos
freertos_kemnel
3, |ibraries
output
vendors

T |':l rl-' |'-I [iP

G

rj:'

F

4!

aws_demos.scfg
= _aws_demos HardwareDebug.launch

r

&

y 15 wolfss!

fig.14. Project structure after wolfssl project imported

You can see that the wolfssl project has been added in the project explorer. In the added wolfssl
library project, there is nothing to set because the path to the include files generated by the
aws_demos project is already set.

ADDING WOLFSSL DEMO APPLICATION FILES

Add wolfSSL demo application files which work as a kind of FreeRTOS demo task. Point to the
aws_demos folder on the project explorer pane, then open the floating dialog by right button click
to create a new source file folder named “wolfSSL demo”.

15



Bl Project Explorer X =Y
BES Y &
v | aws_demos [HardwargDatoct
> mpl Include i New I = =4 Praject...
y (B vemli‘cri,lr'renﬂ:sfbo Go Inte .;3 Code Genesator
» (= application_code
L.T_x o Open in Mew Window 9 File
» (= config_files 3
y (2 dérfios Show In Alt+Shift+W > |5 File from Template
» = f.reent_os_kemel [ Copy CtisC 4 Folder
» (= libraries = D2 Chiliv 2
y @ output aste trl Gj ass
s (= vendors 3 Delete \hi  Header File
> (2% trash Source ¢/ SourceFile
%0 aws_demos.scfg Move... I i SourceFolder I
= aws_demos Hardwa
o Rename... F2 | o
» T wolfssl Le] q Create a new source folder i
L3 Import.. ™  Example...
3 Export.
o P
™} Other... Ctrl+N
Build Project I

fig.15. Creating a source folder for wolfssl_demo

Open the following folder with explorer and grab all the files( *.c, *.h) in there and drop them on the
created “wolfss|_demo” folder in the project explorer pane of the e studio.

<base>\wolfssI\IDE\Renesas\e2studio\RX72N\EnvisionKit\wolfss|_demo

[& | [ ][ @] |2 Debug v || % aws_demos HardwareDebug v | M L | B K v W S e -
v HletaD O -.-|£
K-k M=
v&ém_demos[HardwareDebug] Home Share View

» i Includes

28 oards/m72n-envision-ki € v 4 % T2n_demo » EN » wolfssl » IDE » Renesas » elstudio » RXT2N » E
s (2 wolfssl_demo - ~

> (@ application.code RABM4 A _DName
» [= config_files

5 S demog; . S

- RXT2N

s (= freertos_kernel B key_data.h

5 (= libraries EnvisionKit B user_settings.h
» (= output Gaekadata B wolfssl_demo.c
S ::Tms common B wolfssl_demo.h
{5k aws_demos.scfg SN
|=| aws_demos HardwareDebug.launch test
5 TS wolfssl
. wolfss!
wolfssl_demo
RISCV
ROWLEY-CROSSWORKS-ARM
STM32Cube

16



fig.16. Adding wolfssl_demo source files

You will be asked whether you want to process these files by copying or linking. Choose linking.

T

i, T Lo M N T
W e WS _0EMOoSs [Narawarcucoug)

> il Includes
(2 vendors/renesas/boards/m72n-envision-kit/aws_demaos)
5 wolfssl_demo
(= application_code
(= config_files

(= demos
(= freertos_kernel & e
(= libraries
= output

(= vendors Select how files should be imported into the project:

<h () Copy files

o aws_demos.scfg ® Link to files

-
R

&

=| aws_demos HardwareDebug.launch
== wolfssl

[ Create link locations relative to: PROJECT_LOC ~

Configure Drag and Drop Settings...

@

fig.17. Copying files by linking

Add more files below to the wolfss|_demo folder by linking:
1. <base>\wolfssl\wolfcrypt\benchmark\benchmark.c

2. <base>\wolfssl\wolfcrypt\benchmark\benchmark.h

3. <base>\wolfssl\wolfcrypt\test\test.c

4. <base>\wolfssl\wolfcrypt\test\test.h

Finally, you should see the wolfss|_demo folder in the project explorer, as shown in fig.18.

17



“ 'li_—'f- aws_demos [HardwareDebug]
il Includes
——septlernireneseribeqrds/r 7 2n-envision-kit/aws_demos/
¥ 2 wolfssl_demo
y ﬁ benchmark.c
» | benchmark.h
» [g key_data.c
» | key_data.h
» g testc
» [ testh
+ [ user_settings.h
+ |8 wolfssl_demo.c
» | wolfssl_demo.h
» (= application_code
» (&= config_files
v = demos
v == freertos_kernel
» (= libraries
» (= output
v = vendors
» (2% trash
i85 aws_demos.scfg
=| aws_demos HardwareDebug.launch
: ],_-3'3- wolfssl

fig.18. files in the wolfssl_demo folder

ADDING INCLUDE FILE PATHS TO THE PROJECT

Open aws_demos project property setting dialog, then select “C/C++ build” > "Settings” >
“"Compiler” > “Source” to show “include file directories” pane. Add following include file paths:

@ s{ProjDirPath}/../..[..[..[../wolfss]

@ s{ProjDirPath}/../../..|..[../wolfss|/IDE/Renesas/e2studio/RX72N/EnvisionKit/wolfss|_demo

ADDING PREPROCESSOR MACRO

Open aws_demos project property setting dialog, then select “C/C++ build” > "Settings” >
“"Compiler” > “Source” to show “Macro definition” pane. Add following macro definition:

€ WOLFSSL_USER_SETTINGS

This macro definition lets wolfSSL demo application refer the user_settings.h file.

18



ADDING LINK LIBRARY

Open aws_demos project property setting dialog, then select “"C/C++ build” > “Settings” > “Linker” >
“Input” to show “Relocateable files, objects files and library files” pane. Add following library file:

€ s{ProjDirPath}/../../..]..]..Jwolfssl/IDE/Renesas/e2studio/RX72N/EnvisionKit/wolfssl/Debug/w
olfssl.lib

7.ADDING WOLFSSL DEMO AS A TASK

wolfSSL_demo has been added as one of the demo applications to the project but not enabled yet.
To do this, enable the demo and register its entry function to the demo runner environment. Open
the following configuration file with editor.

<base>\venders\renesas\boards\rxy2n-envision-kit\aws_demos\config_files\aws_demo_config.h

In the file, find "CONFIG_CORE_MQTT_DEMO_ENABLED” macro definition and make it
commented out. Instead add definition of “*CONFIG_WOLFSSL_DEMO_ENABLED” macro to set
wolfssl demo enable.

ity 70YzIH-I7270-5- B BT § =0
» 2 vendors/renesas/boards/n72n-envision-kit/aws_demc A 27 #define _AWS_DEMO_CONFIG_H_
v [ wolfss|_demo 28
[ benchmark.c
[ benchmark.h
> |gh key_datac
E;". key_data.h
g test.c
| testh
[ user_settings.h
|_{; wolfssl_demo.c
[ wolfssl_demo.h
(= application_code
v (= config_files
[ aws_bufferpocl_config.h
L‘h aws_demo_config.h
[.k aws_ggd_contig-h
Lh‘;‘. aws_iot_network_config.h
5 [ aws_matt_config.h
[ aws_ota_agent_config.h
[y aws_secure_sockets_config.h
'_h; aws_shadow_config.h
» g aws_wifi_config.h
| core_http_config.h - —
8 core_mqtt_canfigh - #elif (OTA == 1)
| core_pkes11_config.h 56 #define CONFIG_OTA_UPDATE_DEMO_ENABLED
| defender_config.h 57 #endif
& defender_demo_config.h 58

#include "FreeRTOSApplicationCenfig.h”

y #det
#define

oEmo 1

= 3 55 /® Default configuration for all demos. Individual demos can override the
[} FreeRTH | fig.h

L Free WPP{'_“"”"C“” g &8 #define democonfigDEMO_STACKSIZE ( co
|y FreeRTOSConfig.h 61 #define democonfigDEMO PRIORITY ( ts]

fig.19. Add macro in the configuration file

Moreover, open the following file.
<base>\demos\include\iot_demo_runner.h

Then add the two lines of code below at just before the last #else statement of the file.

19



#elif defined(CONFIG_WOLFSSL_DEMO_ENABLED)
#define DEMO_entryFUNCTION wolfSSL_demo_task

11 o #if :Iefined(-demconf'.igDTA_IJ?DATE_‘MSK_STACK_SIZE .)
114 #undef democonfigDEMO STACKSIZE

r T 113
[ &

ﬁ' f‘(‘rTU- 1 uw:gefine democonfigDEMO_STACKSIZE democonfigOTA_UPDATE_TASK_STACK SIZE
116
» [l Includes 117 - #if defined( democonfigOTA UPDATE_TASK_TASK_PRIORITY )
> (B vendors/renesas/boards/m72n-envision-kit/s | 118 #undef democonfigDEMO_PRIORITY
5 8 wolfssl_demo 119 #define democonfigDEMO_ PRIORITY democonfigOTA_UPDATE_TASK_TASK_PRIORITY
. icaki 128 #endif
=, apphcation_code
_“; cZ:ﬂ P 121 = #elif defined( CONFIG_BLE_GATT_SERVER_DEMO_ENABLED )
¥ ot 122 #define DEMO_entryFUNCTION vGattDemoSvcInit
v (& demos 123 - #if defined( democonfigNETWORK TYPES )
¥ (= common 124 #undef democonfigNETWORK_TYPES
(= coreHTTP 125 #define democonfigNETWORK TYPES  ( AWSIOT_NETWORK_TYPE BLE )
s & corsMQTT 126 _wendif
2 127 = #elif defined( CONFIG_MQTT_BLE_TRANSPORT_DEMO_ENABLED )
» & Oemo_unner #define DEMO entryFUNCTION RUNMQTTBLETransportDemo

» (&> dev_mode_key_provisioning

» (= device_defender_for_aws
» (= device_shadow_for_aws

= #if defined( democonfigNETWORK_TYPES )
#undef democonfigNETWORK_TYPES
#define democonfigNETWORK_TYPES  ( AWSIOT_NETWORK_TYPE_BLE )

» (& greengrass_connectivity _"e“dif
i = #elif defined( CONFIG_SHADOW BLE_TRANSPORT DEMO_ENABLED )
ne #define DEMO_entryFUNCTION RunShadowBLETransportDemo

» [y aws_application_version.h
[y aws_clientcredential_keys.h
[y aws_clientcredential.h

= #if defined( democonfigNETWORK_TYPES )
#undef democonfigNETWORK_TYPES
#define democonfigNETWORK_TYPES  ( AWSIOT_NETWORK_TYPE_BLE )

> [ ows demon nli:!::ii d( CONFIG_CLI_UART_DEMO_ENABLED )
T . = ne | 5, 3, |
i&} aws_jot_demo.networkh #define DEMO_entryFUNCTION VRUNCLIUartDemo
» Uy aws_ota_codesigner_certificate.h = #elif defined( CONFIG_DEVICE DEFENDER DEMO_ENABLED )
» B iot_config_comman.h #define DEMO_entryFUNCTION RunDeviceDefenderDemo

3 iot_ demo logging.h
5 Ia iot_demo,_runnech = #elif defined(CONFIG_WOLFSSL_DEMO_ENABLED)
y jc.:bs TOr BN #define DEMO_entryFUNCTION wolfSSL_demo_task
» (& network_manager = f#else /* if defined( CONFIG CORE MQTT_BASIC_TLS_DEMO_ENABLED ) */
» (= ota /* if no demo was defined there will be no entry point defined and we will not be abl
y B tep #error "No demo to run. One demo should be enabled”

158

fendif /* if defined( CONFIG_CORE MGTT BASIC TLS DEMO_ENABLED ) */

» (= freertos_kemel 5

» (= HardwareDebug
» (& libraries *E | B 3vy-L i3 (@ AV-b T30~ U AX-RYZaTh

fig.20. Add definition of entry function

Those addition registers the wolfSSL_demo to run.

EXECUTION OF THE WOLFSSL DEMO APPLICATION

Internally, wolfssl_demo has three different types of demos which is selectable by the following
definitions in the wolfss|_demo.h.

L 4 #define CRYPT_TST
L 4 #define BENCHMARK
€  #define TLS_CLIENT
By enabling one of the three definition and rebuild of aws_demo project changes the demo.

Whenever you make any change in user_settings.h, rebuild wolfssl| project followed by aws_demos
project. The execution of the demo can use debugger in the board and monitor the output from
demo through "Renesas debug virtual console”.

CRYPTO-TEST DEMO

20



You will see the following output in the Renesas Debug Virtual Console when you choose crypto
test demo.

- el Nty

error test passed!
MEMORY  test passed!
basesd  test passed!

asn test passed!
RANDOM  test passed!
MDS test passed!
MD4 test passed!
SHA test passed!

SHA-256 test passed!
SHA-512 test passed!
Hash test passed!
HMAC-MDS5 test passed!
HMAC-SHA test passed!
HMAC-5HA256 test passed!
HMAC-5HAS12 test passed!

GMAC test passed!
Rabbit test passed!
DES test passed!
DES3 test passed!
AES test passed!

AES192  test passed!
AES256  test passed!
AES-GCM  test passed!

RSA test passed!
PWDBASED test passed!
ECC test passed!

ECC buffer test passed!
CURVE25519 test passed!
logging test passed!

mutex test passed!

crypto callback test passed!
Test complete

End wolfCrypt Test

fig.21. Output from Crypt-test demo

CRYPTO-BENCHMARK DEMO

You will see the following output in the Renesas Debug Virtual Console when you choose crypto-
benchmark demo.

21



=

vl A T L
Start wolfCrypt Benchmark

wolfCrypt Benchmark (block bytes 1824, min 1.8 sec each)

RNG 2 MB took 1.885 seconds, 2.839 MB/s
AES-128-CBC-enc 1 MB took 1.0@2 seconds, 1.438 MB/s
AES-128-CBC-dec 1 MB took 1.816 seconds, 1.393 MB/s
AES-192-CBC-enc 1 MB tock 1.884 seconds, 1.313 MB/s
AES-192-CBC-dec 1 MB took 1.81@ seconds, 1.282 MB/s
AES-256-CBC-enc 1 MB took 1.0€8 seconds, 1.211 MB/s
AES-256-CBC-dec 1 MB took 1.888 seconds, 1.187 MB/s

AES-128-GCM-enc 658 KB took 1.887 seconds, 645.738 KB/s
AES-128-GCM-dec 650 KB took 1.0@7 seconds, 645.546 KB/s

AES-192-6CM-enc 625 KB took 1.8@9 seconds, 619.364 KB/s

AES-192-G{M-dec 625 KB took 1.889 seconds, 619.188 KB/s

AES-256-GCM-enc 688 KB took 1.8@7 seconds, 595.888 KB/s

AES-256-GCM-dec 600 KB took 1.8@7 seconds, 596.887 KB/s

GMAC Default 1 MB took 1.88@ seconds, 1.214 MB/s

RABBIT 8 MB took 1.8@3 seconds, 8.253 MB/s

3DES 525 KB took 1.842 seconds, 584.856 KB/s

MD5 24 MB tock 1.0€1 seconds, 24.397 MB/s

SHA 11 MB took 1.8@@ seconds, 1@.984 MB/s

SHA-256 12 MB took 1.882 seconds, 11.651 MB/s

SHA-512 625 KB took 1.0@9 seconds, 619.364 KB/s

HMAC -MDS 24 MB took 1.881 seconds, 24.885 MB/s

HMAC -SHA 11 MB took 1.8688 seconds, 18.791 MB/s

HMAC-5HA256 11 MB tock 1.8@2 seconds, 11.428 MB/s

HMAC-5HAS12 625 KB tock 1.826 seconds, 689.459 KB/s

PBKDF2 672 bytes took 1.8@8 seconds, 666.482 bytes/s

RSA 2048 public 94 ops took 1.885 sec, avg 10.691 ms, 93.532 ops/sec

RSA 2@43 private 2 ops took 1.322 sec, avg 660.80@ ms, 1.513 ops/sec

ECC [ SECP256R1] 256 key gen 6 ops took 1.835 sec, avg 172.467 ms, 5.798 ops/sec
ECDHE [ SECP256R1] 256 agree 6 ops took 1.834 sec, avg 172.300 ms, 5.884 ops/sec
ECDSA [ SECP256R1] 256 sign 6 ops took 1.844 sec, avg 174.80@ ms, 5.747 ops/sec
ECDSA [ SECP256R1] 256 verify 4 ops took 1.338 sec, avg 332.580 ms, 3.8@8 ops/sec
CURVE 25519 key gen 4 ops took 1.817 sec, avg 254.325 ms, 3.932 ops/sec

CURVE 25519 agree 4 ops took 1.815 sec, avg 253.750 ms, 3.941 ops/sec

Benchmark complete
End wolfCrypt Benchmark

fig.22. output from Crypt-benchmark demo

TLS-CLIENT DEMO

When you attempt to run TLS_Client demo, prepare the communication opponent program(TLS
server program). wolfSSL package provides TLS server example application for this purpose. The
application is generated by building wolfSSL package. You can build wolfSSL on Linux(including
MacOS and WSL) with gcc installed or build using Visual Studio. The following introduces the build
on WSL.

22



$ cd <base>/wolfss|
$ ./autogen.sh

$./configure —enable-ecc —enable-dsa CFLAGS="-DWOLFSSL_STATIC_RSA -DHAVE_DSA
-DHAVE_ALLCURVES -DHAVE_ECC”

$ make

$ ifconfig

If “make” command reports no error, TLS server application is ready to run. Before running the
server application, get IP address of the server by typing “ifconfig”. You could see IP v4 address in
the console. Set the address to the TLSSERVER_IP macro defined in wolfSSL_demao.c.

The IP address of the target board could be set by changing value of the following macros:

= ipconfigUSE_DHCP defined in FreeRTOSIPCOnfig.h

= configlP_ADDRo ~ configIP_ADDR3 defined in FreeRTOSConfig.h

For debugging purpose or when you get trouble in TCP connection, try to use static IP address for
the board.

Now you can run TLS server application by typing:

$ .Jexamples/server/server -b -d -i

The sever application waits for the client connection. Run the demo on the board to establish TLS
communication with the server application. You will see the following output in the Renesas Debug
Virtual Console.

TLS Client attempt to establish TLS connection six times with TLS server using six different cipher
suites respectively. You may notice RSA authentication is included in the six cipher suites. Those six
cipher suites are accelerated by TSIPvi1.14.

TSIPv1.14 supports two more cipher suites using ECDSA authentication. You can try those cipher
suites in the next section.

23



* GE LT M

cipher : ECDHE-RSA-AES128-GCM-SHA256
Received: I hear you fa shizzle!

cipher : ECDHE-RSA-AES128-SHA2S56
Received: I hear you fa shizzle!

cipher : AES128-SHA
Received: I hear you fa shizzle!

cipher : AES128-SHA256
Received: I hear you fa shizzle!

cipher : AES256-5HA
Received: I hear you fa shizzle!

cipher : AES256-5HA256
Received: I hear you fa shizzlel

End of TLS_Client demo.

JF* ___________________________________________
TLS_Client demo
- TLS server address:192.168.1.14 port: 11111
- with TSIP
U

fig.23. output from TLS-Client demo(1)

CHANGING SERVER CERT(CHANGING AUTHENTICATION METHOD)

In the previous TLS communication demo, the server certificate contains RSA public key. If you
want to use a cipher suite that includes ECDSA, you will need to change the settings of the wolfSSL
demo application setting. Opne user_settings.h, enable USE_ECC_CERT definition and rebuild

wolfSSL project and aws_demos project.

This definition causes the TLS_client to use a Root CA certificate that can validate the server
certificate containing the ECC public key presented by the server.

In addition, the opposite server application also needs to specify the server certificate and private
key file containing the ECC public key as an option, and then execute it as shown below.

$ .Jexamples/server/server -b -d -| -c ./certs/server-ecc.pem -k ./certs/ecc-key.pem

You will see the following output from TLS client. Both cipher suites have ECDSA.

24



B Renesas Debug Virtual Console 2 "EREL TAH K

TLS Client demo
- TLS server address:192.168.1.14 port: 11111
- with TSIP

|cipher : ECDHE-ECDSA-AES128-GCM-SHA256
Received: I hear you fa shizzle!

|cipher : ECDHE-ECDSA-AES128-SHA256
Received: I hear you fa shizzle!

End of TLS_Client demo,

fig.24. output from TLS-Client demo(2)

THINGS TODO WHEN USING USER’S ROOT CA CERT

The Root CA certificate and the server certificate used in this example application, can be used only
for evaluation. If you want to use your own certificate, prepare following items:

1. Provisioning Key
2. RSAkey pair for validating RootCA certificate

3. The signature generated by the RootCA certificate with the private ky in 2 above.

Refer to the manual provided by Renesas for how to generate them.

25



RESOURCES

Followings are the links to the sites that contain helpful information regarding board, MCU, TSIP
and wolfSSL .

RENESAS SITES

» Renesas wiki page for RX72N Envision Kit (https://github.com/renesas/rx72n-envision-kit/wiki)

» Renesas RX MCUs( https://www.renesas.com/us/en/products/microcontrollers-
microprocessors/rx-32-bit-performance-efficiency-mcus/

» Renesas Trusted Secure IP Driver(TSIP) (Renesas Trusted Secure IP
Driver(TSIP)(https://www.renesas.com/us/en/software-tool/trusted-secure-ip-driver/)

WOLFSSL SITES

wolfSSL Website (www.wolfssl.com)

wolfSSL Renesas page (https://www.wolfss|.com/docs/renesas/)

wolfSSL TSIP support page (https://www.wolfss|.com/docs/wolfss|-renesas-tsip/)

vV VYV V V

wolfSSL Renesas GitHub repo (https://github.com/wolfSSL/Renesas/)

SUPPORT AND CONTACT

For support inquiries and questions, please email support@wolfssl.com. Feel free to reach out to

info@wolfssl.jp.

26



